
1 Introduction

Recently FFAG type machines have been proposed for the acceleration of muons because of the
(in principle) very large transverse acceptance. The combination of the short muon lifetime and
the requirement for large particle transmission dictates that extreme rates of acceleration be used;
on the order of 1.5 MeV/metre over several kilometres. Hence, the speed and momentum of
reference particles changes appreciably from cell to cell of the magnetic lattice. Consequently,
cell traversal time, path length and optical properties change with the reference energy from cell
to cell.

1.1 Acceleration by RF cavities

Of course, the cell traversal times must be synchronized with the waveforms in the RF cavities
responsible for acceleration. In a linear accelerator composed of independently phased cavities,
through which particles travel only once, synchronization would not be a problem. However in a
circular machine, particles must make repeated passages through the same cavities; and on every
revolution of the machine the frequency and phasing of each cavity must be readjusted.

1.1.1 Proton synchrotron

In a conventional synchrotron-type machine, with acceleration distributed over many thousands
of turns, these adjustments are (usually) adiabatic and can be easily accommodated by the cavity
filling times. Under these circumstances, the RF and bunch trains appear periodic and it is
customary to introduce the notions of harmonic number, synchronous phase and ‘RF bucket’
of stable oscillations. [Note, if part of the ring is unfilled then it is possible to operate with
non-integer harmonic number and have the RF system contract or expand the RF train in the
beam gap; this is done at the BNL AGS and CERN SPS for special applications.]

1.1.2 Muon FFAG

In the proposed muon accelerators, by contrast, acceleration is completed in a few turns (< 10)
and the RF adjustments needed are impractically large and fast. Even if this adjustment were
possible, the fast variation of cell traversal time and path length means that the notions of
synchronous phase and RF bucket cannot be applied to the particle trajectories. The usual ideas
of synchrotron longitudinal dynamics are not relevant to this type of machine; even if one
could “get the phases right” the longitudinal dynamics would not be simple.

1.1.3 Selectivity

The FFAG is a very capable transport channel with an enormous acceptance: almost any beam
we put into it will be spat out a few turns later; but not necessarily at the correct energy. This
lack of discrimination implies that we have to select particles of the correct energy based on their
arrival time, which in turn means that one has to keep the beam bunched.
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1.2 High-Q cavities

Let us understand the RF power requirements. There are designs available for 200 MHz normal
conducting (NC) and 400 MHz superconducting cavities (SC) to be used in CERN LHC that
provide a starting point for extrapolation. Let us imagine 60 MW of wall-plug power is available
and that it can be converted to RF power at the accelerating gap with 50% efficiency. If there are
300 NC cavities, then allowed power consumption is 100 kW per cavity. Each cavity has 1.4 MV
gap voltage and so the shunt resistance has to be 10 Mohm or more. The ratio of resistance
to quality factor (R/Q) depends on cavity geometry, and approaches 200 for the CERN cavities.
Hence, in this scenario (30 MW & NC cavities) the quality factor must be at least 5× 104.

The cavity output faithfully follows its input for variations comparable with (or slower than)
the cavity filling time. The filling time is equal to quality factor multiplied by RF period; it is the
number of RF cycles for any disturbance to fall to e−π ≈ 4% of its initial value. Hence the filling
time is 250 µs, or more, in our high-Q scenario. This should be compared with the revolution
period, for a 2 km ring and light-speed particles, which is 6.7 µs. Evidently, the cavity phase
cannot be made to follow the ideal variation on a turn-by-turn basis. One could imagine a vector
feedback of the gap voltage so as to reduce the filling time by say a factor 20, but this would
still not guarantee sufficient waveform fidelity and moreover the peak power would rise.

One way to lower the R and the Q, without increasing the RF power, would be to accelerate
more slowly over more turns of the ring, but this results in greater muon decay losses and probably
smaller longitudinal acceptance. If superconducting cavities were used, the power argument does
not apply; but with quality factors from 106 to 109 pure sinusoid operation is the only mode
possible.

2 RF waveform scenarios

2.1 Single frequency, fixed phases

One can imagine to operate all the cavities at a single frequency. If no care is paid, then
acceleration will be stochastic. However, one may pick the initial individual cavity phases and
optimize the single fixed frequency; and then some net acceleration will result. Let T be the
desired crossing time corresponding to zero phase angle. The phases are easily set with an
In-phase and Quadrature (IQ) mixer based on the following decomposition:

cosω(t − T ) = cosωt cosωT + sinωt sinωT . (1)

2.2 Moving phases

One can imagine to move the phases of accelerating stations on a turn-by-turn basis. There are
two ways in which this may be achieved. Unfortunately, use of either of them would entail use
of all (and more) of the available space for RF in the ring!
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2.2.1 Multiple frequencies

Let us suppose that the ideal phase variation ∆Φ(t) is known with respect to some carrier
frequency ω. Further, let this ideal variation be approximated by the function

∆Φ(t) ≈ Φ+ ∆φ cos(Ωt + φ) , (2)

where the parameters Φ, ∆φ, Ω and φ are obtained by fitting. Now this may expanded in the
form

cos(ωt + Φ) cos[∆φ cos(Ωt + φ)]− sin(ωt + Φ) sin[∆φ cos(ωt + φ)] . (3)

A low order Fourier-Bessel expansion then gives:

cos(ωt+Φ)J0(∆φ)−2J1(∆φ) sin(ωt+Φ) cos(Ωt+φ)−2J2(∆φ) cos(ωt+Φ) cos 2(Ωt+φ) . (4)

Under the assumption that ∆φ is small, the J0 and J1 Bessel function terms dominate; and
we are left with a constant in-phase term and a modulated quadrature term, respectively. The
quadrature term may be generated either by a modulated low-quality-factor system or by synthesis
of two sinusoids generated by high-quality-factor systems.

2 sin(ωt + Φ) cos(Ωt + φ) = sin[(ω + Ω)t + Φ+ φ] + sin[(ω − Ω)t + Φ− φ] . (5)

Hence, three frequencies are required: a carrier ω and lower and upper sidebands ω±Ω. We have
carried out this procedure with the conclusion that the J1(∆φ) correction terms are not small. To
sweep the phase correctly requires a quadrature modulation term comparable with the in-phase
carrier. Note, so many approximations are made in this derivation that it would probably be
better to do numerical fitting of three arbitrary sinusoids to the known function cos[ωt+∆Φ(t)].

2.2.2 IQ corrector

The desired waveform may be written in IQ form:

cos[ωt + ∆Φ(t)] = cos(ωt) + [cos∆Φ(t)− 1] cos(ωt) − sin∆Φ(t) sin(ωt) . (6)

One may generate the first term with the high-Q, high-R RF, and the second two terms, involving
∆Φ(t), with a low-Q, low-R frequency agile system. If ∆Φ(t) is a small variation, then the time-
varying amplitudes sin∆Φ and [cos∆Φ− 1] are small; and one could imagine to generate them
with a low-Q cavity. For the muon-FFAG, unfortunately, the peak values of the quadrature term
are comparable with the carrier; and so high instantaneous power is required. Nevertheless, this
scheme certainly has the merit of flexibility.

A drawback of this scheme is that it can only be made to work if the bunch train does
not fill the entire machine circumference and the cavity filling time is shorter than the gap. The
desired quality factor is equal to the number of empty RF periods and could be as high as 103.
The cavity phases are reset (i.e. non-integer harmonic operation) during the passage of the beam
gap. Simulation of the beam dynamics for such a scenario requires modeling of the transient
response of the cavities; this is discussed below in section 11.
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2.3 Ideal phases

Let us set aside for a moment the technological problems, and assume the ideal phases can be
provided. The question then becomes “what longitudinal phase space is generated?”, and how
is it affected by the addition of second harmonic.

2.4 Dual harmonic

One may imagine to flat-top the RF waveform by the addition of 2nd harmonic. We have used
the following waveform:

(1/3)[4 cosωt − cos 2ωt] , (7)

and so a 33% over-voltage is required at the fundamental.

2.5 Choice of RF

For bunches of given time and energy spread, the phase variation across the bunch is smaller if
the RF is lower. Hence an alternative to flat-topping with 2nd harmonic would be to use a lower
fundamental frequency, say 100 MHz, as a means to achieving greater longitudinal acceptance.

For a given cavity quality factor, the time to re-adjust the cavity phases becomes doubled
when 100 Mhz is used; and so the bunch train must be shortened. However, this is not a concern
if one adopts the “single frequency, fixed-phases strategy” and makes no attempt to adjust phases
turn-by-turn.

Due to the larger physical size of 100 MHz cavities and the Kilpatrick scaling on gap
breakdown voltage, the average gradient attainable with lower frequency cavities is likely to
be unfavourable compared with 200 MHz operation. However, if use of lower RF facilitates
acceleration over a larger number of turns, the lower gradient is less of an issue.

3 Optimization Strategy

Let us first say that there are probably many possible optimization strategies, and that we report
only one of them. Our optimization is based on reference particles (one per bunch), not on
complete bunches/ensembles and so cannot directly be used to maximize input acceptance or
minimize output emittance.

Initially, the ideal phases cavity-by-cavity and turn-by-turn are calculated for a single syn-
chronous particle in the reference bunch. One assumes this particle is accelerated perfectly at
every cavity, and adjusts the phases to make this possible. The ideal phases and gap-crossing
times are recorded.

Note, we choose to arrange all the ideal phases so that at the gap-crossing time the phase
is zero and the reference particle always rides the crest of the wave. This not only maximizes
acceleration but also minimizes the transverse (nonlinear) defocusing of the RF gap. Hopefully,
this “zero-phase decision” feeds down to the less ideal RF scenarios discussed below. Most
probably the parabolic acceptance area seen in many of the cases studied stems from this decision.
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3.1 Ideal phases

The ideal phases for a single reference bunch are known; but one must also consider other bunches
in the train. We assume that the RF system is not sufficiently agile to make adjustments for
individual bunches, but rather that it runs at constant frequency during the train and that phase
adjustments are made in the beam gap. Probably the best solution is to have different constant
frequencies on each turn, but we chose a simpler option: to use the “best frequency” found
above. This also simplifies the IQ-corrector concept because there is a single carrier frequency.

3.2 Fixed frequency and phases

To optimize the fixed frequency and phases, one chooses a frequency and then calculates the
phases at the gap-crossing times of the ideal particle. One then forms the root-mean-square
deviation of the fixed-phases from the ideal values. Then a search is made to find the “best
frequency” which minimizes this r.m.s. phase deviation. The results of this calculation is a set
of “best phases” for the reference bunch; these phases are not-ideal.

Because every bunch arrives displaced from the ideal phase, we must find some way of
accelerating that is tolerant of poor phasing.

3.3 Over-voltages

Since the time of Veskler and McMillan, it has been recognized as advantageous to use an “over-
voltage”. Rather than accelerate at the crest of the RF wave, one lets the ideal particle lag
or lead the wave and increases the voltage to compensate. In a synchrotron, the advantage of
increasing the phase space area that may be accelerated more than compensates for the penalty
of higher voltage. In a muon FFAG the benefit is less clear, a priori, because of the speed and
path length variations. However, a posteori, modest over-voltage is of enormous benefit; but it
is not a “cure all”.

3.3.1 Fixed frequency and phases

We chose to pick the over-voltage so as to minimize the bunch-to-bunch variation of the extraction
energy. We do this by tracking a reference particle in each bunch of the train and using a numerical
search for the best voltage. Though synchronous phase has little meaning in a muon FFAG,
nevertheless one can define a quantity that satisfies over-voltage× cos(φs) = nominal-voltage.

3.3.2 Ideal phases

One may wonder if allowing an additional small turn-by-turn phase variation can reduce the bunch-
to-bunch energy variation at extraction. A small over-voltage is then needed to compensate for
the “synchronous phase program”.
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4 Simulations of longitudinal dynamics

The model used is very simple. One assumes complete decoupling from the transverse motion!
Then we break the 2 km ring into roughly 300 identical cells and lump an RF station (could be 1 or
more cavities) in each cell. Cavities all run at the same frequency, but can have individual phases.
The arrival time depends on β = v/c and path length. A parabola has been fitted through Carol
Johnson’s delta-circumference versus energy plot and is used for the path length computation. I
assume that the energy acceptance is 6-to-20 GeV ±10% of injection and extraction energies.
Typically we track 100 bunches, with roughly 1000 particle per bunch.

Initially, the longitudinal phase plane is uniformly flooded with trial particles; and one
attempts to accelerate them. Particles which survive the complete acceleration to 20 GeV are
recorded and used to map out both the input admittance and the output emittance. To increase
accuracy, the procedure is repeated using the admittance of the previous trial as a basis for
populating the input ensemble of the subsequent trial. Because the input beam is assumed to
have an energy spread of ±10%, the input admittance is truncated to an energy band ±10%
wide.

4.1 Summary of cases versus RF requirements

Cases turns ∆E/turn ∆E/cell 〈gradient〉 RF
# % GeV MeV MeV/metre MHz
1,2,3,4 5 2.8 9.333 2.80 200
5,6,7,8,9,10,11,12,13,36 5 2.8 9.333 1.40 200
14,15,16,17,18,19,30,32,33 10 1.4 4.667 0.70 200
20,21,23,25 7 2.0 6.667 1.00 200
22,24 6 2.33 7.777 1.167 200
26,31 10 1.4 4.667 0.70 100
27 7 2.0 6.667 1.00 100
28 8 1.75 5.833 .875 100
29 9 1.56 5.185 .7778 100
34 5 2.8 9.333 1.40 100

5 Summary tables

It is useful to give more than one measure of bunch size in the longitudinal phase plane; and
so, in addition to input acceptance and output emittance, we provide average, full-width and
r.m.s. indicators of bunch phase-length and energy width. In addition, there are bunch to bunch
variations; and to give some idea of this variability we provide average and peak values along the
bunch train. This data is tabulated below.

5.1 Symbols in the tables

Cs = Case, G = single frequency and fixed phases, E = exact phases set turn-by-turn, D = dual
harmonic operation. The bra-kets, 〈. . .〉 denote statistical averaging over the bunch train. The
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use of accents ˇ. . . and ˆ. . . denotes a sorting through the bunch train to find minimum and
maximum values, respectively.
〈input〉 = average bunch input admittance
〈output〉 = average bunch output emittance
in-min/max = minimum/maximum input admittance in the bunch train
ot-min/max = minimum/maximum output emittance in the bunch train
∆Ě = lowest centroid-energy deviation in the bunch train
∆Ê = highest centroid-energy deviation in the bunch train

〈φ̄〉 = average bunch centroid phase
〈φFW〉 = average bunch full-width phase spread
〈Ē〉 = average bunch centroid energy
〈EFW〉 = average bunch full-width energy spread
〈rmsφ〉 = average root-mean-square bunch phase spread
〈rmsE〉 = average root-mean-square bunch energy spread
φ̌FW = lowest full-width phase spread
φ̂FW = highest full-width phase spread
ĚFW = lowest full-width energy spread
ÊFW = highest full-width energy spread
φ̌rms = lowest r.m.s. phase spread
φ̂rms = highest r.m.s. phase spread
Ěrms = lowest r.m.s. energy spread
Êrms = highest r.m.s. energy spread

7



5.2 Summary of Results for 200 MHz RF

Cs G E D φs overV Cc trn 〈input〉 〈output〉 in-min in-max ot-min ot-max ∆Ě ∆Ê
# deg km # eV.s eV.s eV.s eV.s eV.s eV.s MeV MeV

3 Y N N N N 1 5 zero zero 0 0 0 0 -4786. -4683.
4 Y N Y N N 1 5 0.337 0.337 .3358 .3374 .3354 .3375 -2209. -2195.
1 Y N N -40.67 1.318 1 5 1.635 1.832 1.627 1.639 1.770 1.938 -20.7 +17.0
2 Y N Y -34.5 1.213 1 5 2.142 2.229 2.136 2.147 2.138 2.372 -7.5 +6.5

6 N Y N N N 2 5 1.223 1.535 1.218 1.228 1.487 1.592 -3.2 -.095
5 N Y Y N N 2 5 2.212 2.513 2.205 2.221 2.460 2.571 -.095 +.095
7 N Y N Y,P 1.0003 2 5 1.192 1.515 1.182 1.200 1.466 1.554 -1.3 +0.87
11 N Y Y Y,P 1.0002 2 5 2.213 2.503 2.202 2.219 2.444 2.547 +1.85 +1.85
36 N Y N Y,P Y,1.20 2 5 0.8470 0.8230 0.8435 0.8494 0.8194 0.8259 -77.1 +75.6

12 Y N N N N 2 5 zero zero 0 0 0 0 -11673 -11357
10 Y N Y N N 2 5 0.2322 0.2323 0.2307 0.2330 0.2306 0.2332 -2413. -2390.
8 Y N N -41.25 1.330 2 5 1.405 1.914 1.399 1.411 1.840 2.035 -28. +40.
9 Y N Y -34.46 1.213 2 5 1.989 2.264 1.982 1.994 2.167 2.336 -16.6 +16.7
13 Y N Y -34.46 1.213 2 5 1.947 2.2714 1.935 1.964 2.1913 2.375 -88.8 +81.2

33 N Y N N Y,1.30 2 10 1.632 19.68 1.613 1.646 17.64 22.49 -5925 -5643
14 N Y N N N 2 10 0.4968 0.6986 0.4793 0.5193 0.6372 0.8707 -3.2 .007
19 N Y Y N N 2 10 1.699 2.057 1.668 1.733 1.878 2.367 .007 .007

15 Y N N N N 2 10 zero zero 0 0 0 0 -13533 -13497
16 Y N Y N N 2 10 zero zero 0 0 0 0 -13578 -13545
17 Y N N 16.10 1.041 2 10 zero zero 0 0 0 0 -13431 -13414
18 Y N Y 2.04 1.0006 2 10 zero zero 0 0 0 0 -13564 -13540
30 Y N N N Y,1.30 2 10 zero zero 0 0 0 0 -14338 -14333
32 Y N Y N Y,1.30 2 10 zero zero 0 0 0 0 -14083 -13774

20 Y N N 24.91 1.103 2 8 zero zero 0 0 0 0 -13591 -13522
25 Y N N -45.0 1.414 2 7 0.1678 0.1639 0.1670 0.1687 0.1630 0.1653 -12761 -12696
24 Y N N 40.49 1.319 2 6 0.3283 0.3229 .3273 .3302 .3216 .3255 -11111 -11080

21 Y N Y 19.91 1.064 2 8 .0385 .0406 .0327 .0446 .0343 .0472 -11644 -11564
23 Y N Y 33.19 1.195 2 7 0.3086 0.3082 .3078 .3098 .3074 .3093 -10442 -10404
22 Y N Y 44.40 1.400 2 6 1.706 1.884 1.701 1.712 1.833 1.935 -9.2 +8.8

Case #13 is 400 bunches. All other cases use 100 bunches.
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5.2.1 Input statistics

Cs 〈φ̄〉 〈φFW〉 〈Ē〉 〈EFW〉 〈rmsφ〉 〈rmsE〉 φ̌FW φ̂FW ĚFW ÊFW φ̌rms φ̂rms Ěrms Êrms
# deg deg GeV GeV deg GeV deg deg GeV GeV deg deg GeV GeV

4 -83.23 76.54 6.4116 0.4666 18.472 0.1253 76.532 76.537 0.4666 0.4666 18.426 18.532 0.1250 0.1255
1 -65.39 153.5 6.1325 1.1686 35.406 0.3146 153.48 153.49 1.1686 1.1686 35.281 35.477 0.3141 0.3151
2 -69.43 178.2 6.0881 1.20 42.303 0.3377 174.42 179.14 1.20 1.20 42.241 42.446 0.3373 0.3381

6 -4.395 122.9 5.9799 1.20 30.821 0.3186 121.10 124.47 1.20 1.20 30.717 30.973 0.3177 0.3194
5 -0.3516 182.8 5.9791 1.20 47.304 0.3337 182.74 183.84 1.20 1.20 47.111 47.535 0.3333 0.3342
7 5.449 122.5 5.9757 1.20 30.570 0.3194 121.10 124.47 1.20 1.20 30.425 30.699 0.3185 0.3201
11 -1.230 181.5 5.9803 1.20 47.201 0.3337 179.13 183.85 1.20 1.20 46.916 47.417 0.3333 0.3341
36 51.72 106.34 6.2530 0.8761 24.81 0.2343 104.9 107.8 0.8761 0.8761 24.73 24.88 0.2335 0.2350

10 32.87 63.58 6.4396 0.3972 15.478 0.1058 62.434 64.448 0.3872 0.3976 15.340 15.609 0.1055 0.1064
8 48.87 147.3 6.1919 1.0224 34.861 0.2732 145.40 149.45 1.0224 1.0224 34.778 34.949 0.2718 0.2742
9 41.31 174.8 6.1131 1.20 41.357 0.3253 174.42 179.13 1.20 1.20 41.234 41.442 0.3247 0.3262
13 52.03 176.6 6.1219 1.1686 41.235 0.3212 174.42 179.14 1.1686 1.1686 41.10 41.41 0.3199 0.3222

14 81.56 105.16 6.0723 0.9412 27.50 0.2370 101.99 107.82 0.9346 0.9639 27.25 27.85 0.2356 0.2387
19 64.7 175.4 6.0175 1.20 47.42 0.3226 174.4 179.1 1.20 1.20 47.25 47.59 0.3211 0.3242

25 123.9 78.75 6.5067 0.2326 18.23 .0629 78.37 80.60 0.2361 0.2361 18.18 18.31 .06265 .06316
24 17.7 95.09 6.4501 0.3789 22.19 0.1012 93.633 96.80 0.3789 0.3789 22.15 22.27 0.1008 0.1014

21 24.6 34.20 6.5511 0.1209 8.401 .03263 32.00 36.76 .1097 .1300 7.808 8.884 .0299 .0352
23 37.8 99.49 6.4637 0.3406 22.80 .0922 99.49 99.49 .3406 .3406 22.90 23.07 .0918 .0923
22 5.5 173.9 6.1713 1.081 40.40 0.2897 169.7 174.4 1.081 1.081 40.31 40.56 .2891 .2904

5.2.2 Output statistics
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Cs 〈φ̄〉 〈φFW〉 〈Ē〉 〈EFW〉 〈rmsφ〉 〈rmsE〉 φ̌FW φ̂FW ĚFW ÊFW φ̌rms φ̂rms Ěrms Êrms
# deg deg GeV GeV deg GeV deg deg GeV GeV deg deg GeV GeV

4 -45.04 62.31 18.234 0.5538 16.759 0.1494 61.804 62.590 0.55316 0.55442 15.209 22.108 0.1491 0.1496
1 50.80 100.89 19.764 2.8386 24.730 0.7050 99.122 102.53 2.8155 2.8500 24.576 25.084 0.6979 0.7086
2 35.48 109.94 19.759 2.9131 28.742 0.6332 108.29 112.22 2.8678 2.9343 28.071 30.659 0.6306 0.6382

6 -30.64 100.87 19.070 2.4392 25.296 0.6655 99.246 102.13 2.4268 2.4459 23.621 28.653 0.6627 0.6685
5 -27.50 147.49 19.336 2.5936 41.356 0.7355 145.86 148.48 2.5861 2.5963 38.689 48.215 0.7330 0.7382
7 -29.85 99.76 19.070 2.4589 25.408 0.6701 97.937 101.34 2.444 2.463 23.377 28.691 0.6671 0.6732
11 -28.02 148.18 19.34 2.596 41.756 0.7339 146.12 149.52 2.5918 2.5986 38.809 49.100 0.7294 0.7371
36 29.83 108.0 20.409 3.9112 28.82 1.0965 107.3 108.7 3.895 3.917 28.75 28.87 1.091 1.102

10 -47.40 52.12 18.199 0.4771 18.415 0.1274 51.325 52.635 .47638 .47796 12.321 27.011 0.1266 0.1280
8 44.25 82.77 19.947 3.2453 23.831 0.8186 81.963 84.320 3.200 3.2556 21.647 32.130 0.8067 0.8274
9 27.50 111.10 19.753 3.0175 28.221 0.6747 109.46 112.34 2.9927 3.0306 25.395 38.063 0.6705 0.6800
13 42.95 98.837 19.853 3.0585 26.853 0.6763 92.18 101.86 2.9753 3.101 23.33 38.06 0.6709 0.6846

14 -15.71 78.99 19.399 2.2563 20.714 0.5488 74.893 82.22 2.2114 2.2744 15.90 32.21 0.5383 0.5661
19 -15.71 124.3 19.527 2.525 38.02 0.5628 119.93 126.74 2.449 2.549 27.57 55.42 0.5468 0.5807

25 35.04 63.56 19.137 1.9627 17.12 0.5495 63.01 63.92 1.953 1.966 17.06 17.17 0.5453 0.5528
24 -46.59 57.70 19.200 2.104 14.95 0.5833 57.25 58.17 2.092 2.106 14.90 14.10 0.5792 0.5862

21 -95.84 17.50 18.10 0.2420 18.38 .06408 15.97 18.85 .2199 .2650 4.120 50.86 .05827 .06918
23 -58.52 29.03 18.619 1.224 7.180 0.3282 28.96 29.08 1.219 1.226 7.165 7.193 0.3272 0.3297
22 11.60 109.15 20.073 3.2669 27.46 0.6848 108.0 110.3 3.228 3.287 27.32 27.60 0.6768 0.6932

5.3 Summary of Results for 100 MHz RF

Cs G E D φs overV Cc trn 〈input〉 〈output〉 in-min in-max ot-min ot-max ∆Ě ∆Ê

26 Y N N 15.23 1.0374 2 10 zero zero 0 0 0 0 -13392 -13069
31 Y N N N Y,1.30 2 10 1.838 1.795 1.834 1.842 1.790 1.800 -560. -550.
29 Y N N -41.22 1.329 2 9 2.994 2.924 2.986 3.008 2.912 2.938 -38.1 +37.2
28 Y N N -37.65 1.263 2 8 3.245 3.178 3.234 3.259 3.166 3.193 -30.5 +30.0
27 Y N N -35.60 1.230 2 7 3.685 3.630 3.675 3.697 3.616 3.642 -29.5 +29.4
34 Y N N -36.93 1.251 2 5 3.699 3.609 3.686 3.714 3.595 3.632 -69.8 +69.7
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5.3.1 Input statistics

Cs 〈φ̄〉 〈φFW〉 〈Ē〉 〈EFW〉 〈rmsφ〉 〈rmsE〉 φ̌FW φ̂FW ĚFW ÊFW φ̌rms φ̂rms Ěrms Êrms
# deg deg GeV GeV deg GeV deg deg GeV GeV deg deg GeV GeV

31 30.0 130.9 6.2957 0.7591 30.56 0.2049 129.2 132.8 0.7591 0.7591 30.48 30.63 0.2045 0.2052
29 56.8 153.2 6.1718 1.0809 35.37 0.2885 149.4 153.5 1.081 1.081 35.26 35.46 0.2876 0.2894
28 46.7 151.2 6.1338 1.1686 35.24 0.3134 149.2 153.5 1.169 1.169 35.14 35.34 0.3123 0.3139
27 36.6 151.3 6.0916 1.20 36.60 0.3334 149.2 153.5 1.20 1.20 36.50 36.70 0.3328 0.3343
34 29.75 161.7 5.9957 1.20 39.16 0.3237 161.6 162.0 1.20 1.20 39.07 39.26 0.3232 0.3242

5.3.2 Output statistics

Cs 〈φ̄〉 〈φFW〉 〈Ē〉 〈EFW〉 〈rmsφ〉 〈rmsE〉 φ̌FW φ̂FW ĚFW ÊFW φ̌rms φ̂rms Ěrms Êrms

31 4.227 69.44 19.633 2.736 16.93 0.7273 69.10 69.97 2.718 2.742 16.90 16.96 0.7237 0.7310
29 54.11 86.73 19.974 3.204 21.39 0.8168 86.60 86.79 3.176 3.212 21.38 21.41 0.8120 0.8254
28 42.17 84.17 19.76 3.143 19.13 0.8082 84.03 84.27 3.118 3.151 19.11 19.15 0.8057 0.8130
27 34.39 91.29 19.659 3.1976 20.57 0.8016 91.25 91.32 3.176 3.207 20.54 20.59 0.7979 0.8945
34 34.38 116.6 20.106 3.9927 31.96 1.198 115.7 117.8 3.986 3.999 31.91 32.04 1.195 1.203
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6 5-turns, 200 MHz acceleration results

6.1 Single frequency

We shall consider acceleration in five (5) turns of the FFAG. If one uses a single (but optimal)
frequency, fixed initial cavity phases and the nominal RF voltage, then the desired acceleration is
not achieved (case #12); a tiny fraction of particles reach 15.25 GeV.

If one adds 2nd harmonic (case #10), a small phase space area of 0.23 eV.s is transported
to 17.6 GeV and there is no emittance growth.

Figure 1: ±10% band from Input Accep-
tance

Figure 2: Maps to the Output Emittance,
Case #10. Dual harmonic.

6.1.1 With over-voltage

However, if one allows a 33% over-voltage (case #8) then an input phase space area (admittance)
of 1.41 eV.s is transported from 6 to 20 GeV by which time the emittance has increased to
1.91 eV.s. There is no need to adjust the phasing, the beam will find for itself the “right place”;
but we can calculate the phase at injection for synchronization purposes.

Figure 3: ±10% band from Input Accep-
tance

Figure 4: Maps to the Output Emittance,
Case #8. Single harmonic.
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If one adds second harmonic (case #9), then one needs 1.333 × 1.213 of the nominal
voltage. The admittance rises to 1.99 eV.s and the output emittance is 2.26 eV.s. As will be
noted in the figures, transport is non-linear and the occupied phase space has a bizarre shape.

Figure 5: ±10% band from Input Accep-
tance

Figure 6: Maps to the Output Emittance,
Case #9. Dual harmonic.

If one uses identical parameters but considers 400 bunches (case #13), rather than 100,
then one finds some small degradation of the beam quality. The input admittance falls to 1.95 eV.s
and the output emittance rises to 2.27 eV.s. Further, the bunch-to-bunch energy variation rises
from ±17 to ±85 MeV.

6.2 Ideal phases

When the ideal phasing is used, and no other measures are taken (case #6), an input admittance
of 1.22 eV.s is successfully accelerated to 20 GeV with an output emittance of 1.535 eV.s. Notice,
that despite the ideal phasing, the transport is non-linear.

Figure 7: ±10% band from Input Accep-
tance

Figure 8: Maps to the Output Emittance,
Case #6. No over voltage.
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If one allows a tiny variation of the synchronous phase (case #7), then the bunch-to-bunch
energy variation can be reduced from -3 to ±1 MeV; but at the cost of a small degradation in
input admittance 1.19 eV.s

If one adds second harmonic to the basic scheme (case #5), then the input admittance
rises to 2.21 eV.s and the output emittance becomes 2.51 eV.s. However, the transport is so
non-linear that the useful phase space area is probably only one half of these values. Perhaps the
situation could be improved by adjusting the phase of the second harmonic.

Figure 9: ±10% band from Input Accep-
tance

Figure 10: Maps to the Output Emittance,
Case #5. Dual harmonic.

Allowing a tiny phase variation (case #11) results in a 10−4 increase in input admittance,
but increases the bunch-to-bunch energy spread to ±1.9 MeV.

6.2.1 Over-voltage

It is salutary to observe that imposing a 20% over voltage results in a decrease in transmission;
compare case 6 (1.22 eV.s) with case 36 (0.85 eV.s) below.

Figure 11: ±10% band from Input Accep-
tance

Figure 12: Maps to the Output Emittance,
Case #36. 20% over-voltage.
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6.3 Conclusion

For 5-turn acceleration, there is little difference in the output emittance between the use of “ideal
phases” versus using a combination of “best phases” and an over-voltage. When 2nd harmonic
is employed, the useful acceptance is probably greater when the “single-frequency” scenario is
adopted.

7 Other than five turns

To first order, the phase slippage will increase linearly with time; but the RF waveform cos(ωt)
is of approximately parabolic dependence about the peak, and so one expects the transmission
to fall in a roughly parabolic manner as the number of turns is increased.

7.1 Single frequency

This trend is displayed in cases 24,25,20 (single harmonic) and cases 22,23,21 (dual harmonic).
The addition of 2nd harmonic (and greater over-voltage) is rather beneficial; compare cases 22
versus 24 which are both for 6-turn acceleration.

Figure 13: ±10% band from Input Accep-
tance

Figure 14: Maps to the Output Emittance,
Case #22. Dual harmonic.

In case 24, a 1.3× over voltage factor and single harmonic is used to provide an input
admittance and output emittance of 0.3 eV.s. In case 22, a 1.40 × 1.33 over voltage and dual
harmonic is used to achieve an input admittance of 1.7 eV.s and output emittance of 1.9 eV.s.
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Figure 15: ±10% band from Input Accep-
tance

Figure 16: Maps to the Output Emittance,
Case #24. Single harmonic.

Notice that the constrained optimization procedure that we have employed which couples
over-voltage with synchronous phase has a tendency to user lower over-voltages, the greater is the
number of turns; and some loss in transmission can be ascribed to this. See cases 24,25,20 where
the over-voltage drops from 1.4 to 1.1 and the admittance falls progressively from 0.328 eV.s to
zero as the number of turns is increased from six to eight.

7.2 10-turns

We have not achieved successful acceleration over ten (10) turns with 200 MHz RF unless the
ideal phases are used. Compare cases 15,16,17,18,30,32 (fixed phases) with cases 14,19 (ideal
phases).

Figure 17: ±10% band from Input Accep-
tance

Figure 18: Maps to the Output Emittance,
Case #14. Ideal phases, dual harmonic.

When ideal-phases and single-harmonic is used for 10-turn acceleration, case 14, the ad-
mittance falls by about 50% compared with 5-turns. The addition of second harmonic, case 19,
restores the admittance to within 25% of the 5-turn value.
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Figure 19: ±10% band from Input Accep-
tance

Figure 20: Maps to the Output Emittance,
Case #19. Ideal phases, dual harmonic.

It is interesting to note that it is not a straight forward matter to compensate the admittance
loss by increasing the over-voltage. In case 33, the addition of a 30% over-voltage (c.f. case 14)
leads to a very substantial emittance growth due to excessive filamentation. The input emittance
is 1.6 eV.s whereas the output emittance (i.e. the “enclosed area”) is 19.6 eV.s!

Figure 21: ±10% band from Input Accep-
tance

Figure 22: Maps to the Output Emittance,
Case #33. Single harmonic, 30% over volt-
age.

8 Other than 200 MHz

The phase slips accumulate half as quickly when the RF is halved, and so one anticipates that
100 MHz acceleration will be less compromised by using a larger number of turns. See cases
26,27,28,29,31. We have considered only the use of a single frequency and “best phases”, and
no use of 2nd harmonic. The input admittance rises almost linearly from 3.0 to 3.7 eV.s as the
number of turns is reduced from nine (case 29) to five (case 34).
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Figure 23: ±10% band from Input Accep-
tance

Figure 24: Maps to the Output Emittance,
Case #29. 100 MHz, 9 turns.

Figure 25: ±10% band from Input Accep-
tance

Figure 26: Maps to the Output Emittance,
Case #34. 100 MHz, 5 turns.

Due to the extreme non-linear transport in case 34, the useful acceptance is much less than
the advertized admittance of 3.7 eV.s. Increasing the number of turns to seven (case 27) or
eight (case 28) reduces this effect (of non-linearity) quite substantially while maintaining useful
admittances of 3.6 and 3.2 eV.s, respectively.
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Figure 27: ±10% band from Input Accep-
tance

Figure 28: Maps to the Output Emittance,
Case #27. 100 MHz, 7 turns.

Figure 29: ±10% band from Input Accep-
tance

Figure 30: Maps to the Output Emittance,
Case #28. 100 MHz, 8 turns.

8.1 10-turns

With minimal over-voltage, as an artefact of the optimizer, the transmission falls to zero for
10-turn acceleration. But notice how a greater over-voltage can restore transmission even for
a ten-turn acceleration; compare case 26 (4% over voltage and zero transmission) with case 31
(30% over voltage and 1.8 eV.s acceptance).
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Figure 31: ±10% band from Input Accep-
tance

Figure 32: Maps to the Output Emittance,
Case #31. 10 turns, 30% over voltage.

8.2 Conclusion

For acceleration with 100 MHz RF using a single frequency and fixed “best phases” (in the 2 km
ring with 300 cells) the optimum number of turns appears to be seven or eight. However, if it is
desirable to reduce the gradient, acceptable results can be achieved in 10 turns.

9 Other circumference

Just for fun we consider a machine with 1 km circumference but having a path-length-as-function-
of-energy identical with the base 2 km machine. Since the beam spends less time in the machine,
the phase slippage is smaller and consequently the longitudinal admittance is somewhat larger.
See cases 3,4,1,2 which are all for 5-turn acceleration. Conclusions are very similar to those in
section ??. Dual harmonic is beneficial as is the use of a 20-30% over voltage.

Figure 33: ±10% band from Input Accep-
tance

Figure 34: Maps to the Output Emit-
tance, Case #1. Single harmonic and over-
voltage.
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Figure 35: ±10% band from Input Accep-
tance

Figure 36: Maps to the Output Emittance,
Case #4. Dual harmonic, no over-voltage.

Figure 37: ±10% band from Input Accep-
tance

Figure 38: Maps to the Output Emittance,
Case #2. Dual harmonic and over-voltage.

Compare figure 34 with 4, and figure 36 with 2, and figure 38 with 6, to appreciate the
similarities.

10 Conclusion

Using a simple model we have studied the longitudinal dynamics of a muon beam in a 2 km
circumference non-scaling FFAG, composed of roughly 300 equal cells, which operates between
6 and 20 GeV.

When 200 MHz RF is utilized, useful admittances can be achieved with acceleration in 5 or
6 (or less) turns using either ideal phases and nominal voltage or best phases and over voltage.
In either case, transport is non-linear and the useful phase-space is compromised. In both cases,
addition of 2nd harmonic roughly doubles the admittance but the non-linear effect is augmented.
The non-linear effect of dual harmonic is most pronounced when ideal phases are used. If 9 or 10
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turn acceleration is desired, then only the ideal phases scheme will provide successful acceleration;
but the admittance is substantially reduced unless dual harmonic is employed.

For the case of 100 MHz RF, only the best phases and over voltage scenario was studied;
and only for single harmonic operation. The optimal balance between quantity and quality of the
output emittance is realized for 8-turn acceleration; but 7 or 9 turns also give acceptable results.
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11 Cavity transient response in IQ form

Let ω be the carrier frequency. We write the cavity drive current I(t) and the voltage response
V (t) in the IQ-form:

I(t) = Ia(t) cosωt + Ib(t) sinωt , V (t) = Va(t) cosωt + Vb(t) sinωt . (8)

They are governed by the differential equation:

V ′′ + 2kV ′ + ω2
0V = 2kRI , (9)

where 2k = ω0/Q, ω0 is the resonance frequency and primes (′) denote time derivatives. We
substitute the IQ forms and assume that V ′′ is small compared with ω2V (i.e. changes per cycle
are small). For brevity let ω2

0 = ω2 +∆. We compare coefficients of cosωt and sinωt to obtain,
respectively, the coupled equations

−2kRωIb + 2kωVb + ∆×Va − 2kRI ′
a + 2ωV ′

b + 2kV ′
a = 0 (10)

+2kRωIa − 2kωVa + ∆×Vb − 2kRI ′
b − 2ωV ′

a + 2kV ′
b = 0 . (11)

Let us define:

z1 ≡ k(∆ + 2ω2)

2(k2 + ω2)
, z2 ≡ ω(∆− 2k2)

2(k2 + ω2)
, z0 ≡ kR

(k2 + ω2)
. (12)

Then the solution may be written

Va = z0e
−z1t

{
cos z2t

∫ t

−∞
ez1s[−F1(s) sin z2s + F2(s) cos z2s]ds

+ sin z2t

∫ t

−∞
ez1s[+F1(s) cos z2s + F2(s) sin z2s]ds

}
(13)

Vb = z0e
−z1t

{
cos z2t

∫ t

−∞
ez1s[+F1(s) cos z2s + F2(s) sin z2s]ds

− sin z2t

∫ t

−∞
ez1s[−F1(s) sin z2s + F2(s) cos z2s]ds

}
(14)

F1 = −kωIa + ω2Ib + ωI ′a + kI ′b (15)
F2 = +kωIb + ω2Ia − ωI ′b + kI ′a . (16)

Let us suppose that Ia and Ib are step functions rising from zero at Ta, Tb respectively, to
the constant values Ia, Ib. Let Θ denote the Heaviside or unit-step function. Then the response
becomes:[

Va

Vb

]
= z3

[
C1 −C2

C2 C1

] [
cos z2(t − Ta) sin z2(t − Tb)
− sin z2(t − Ta) cos z2(t − Tb)

] [
IaΘ(t − Ta)e

z1(Ta−t)

IbΘ(t − Tb)e
z1(Tb−t)

]
.

(17)
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Evidently, the transfer function is the matrix product of a coupling matrix and a rotation matrix.
The coefficients of the coupling matrix are as follows.

C1 =
k(∆2 − 4ω4)

ω4(k2 + ω2)
→ −kω3

k2 + ω2
→ −kω (18)

C2 =
∆2 + 4(kω)2

4(k2 + ω2)
+

1

2
∆ → (kω)2

k2 + ω2
→ 0 (19)

z3 = R
4kω

∆2 + 4(kω)2
→ R

1

kω
(20)

Here we have taken the limits first ∆ → 0 and second k → 0. In the same limits, one finds
z1 → k, z2 →= −k2/ω and z0 → Rk/ω2.

In the limit Ta, Tb → −∞ one obtains the d.c. response:

Va = R(+Ib∆ + 2Iakω)2kω/[∆2 + 4(kω)2] (21)

Vb = R(−Ia∆ + 2Ibkω)2kω/[∆2 + 4(kω)2] . (22)

If the cavity is driven at its resonance frequency, ∆ = 0, then

Va = IaR and Vb = IbR . (23)

Because this is a linear system, one may invoke the principle of superposition to find the response
to a series of step changes in the drive currents Ia, Ib.
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